

## Режим ПИД регулирования.

<u>Описание режима:</u> Пуск преобразователя частоты внешним тумблером или кнопкой с фиксацией. Регулировка частоты автоматическая в режиме ПИД регулирования.

## Оборудование:

Преобразователь частоты IPD/IPD-VR;

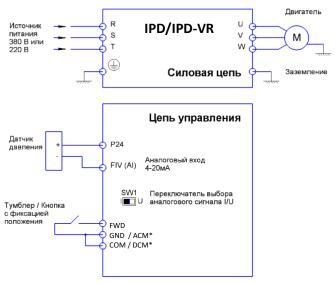
Тумблер – запуск работы преобразователя;

Датчик давления – датчик обратной связи (в данном случае 4-20 мА) для ПИД режима.

## Программирование:

Вход в режим программирования

кнопка « прог »;


Выбор параметра и

запись « ввод » – удержание 2с;

Выбор разряда « экран » – быстрое нажатие:

Выбор номеров групп, номеров параметров

и изменение их значений « 🔻 »



Внимание! Переключатель выбора аналогового сигнала установить в положение «I».
\*ACM и DCM — для моделей до 5,5 кВт включительно, GND и COM — от 7,5 кВт и выше.

| Параметр | Значение | Функция                                                               |
|----------|----------|-----------------------------------------------------------------------|
| Pb17     | 8        | Инициализация заводских параметров                                    |
| PA00     | 7        | Выбор параметра для его индикации при включении                       |
|          |          | преобразователя: отображается сигнал с датчика обратной связи и       |
|          |          | заданное значение давления                                            |
| Pb01     | 1        | Режим установки с помощью аналогового тока                            |
| Pb02     | 1        | Настройка способа пуска: с помощью управляющих клемм                  |
| Pb06     | ***      | Минимальная рабочая частота, Гц                                       |
| PC10     | **       | Номинальный ток двигателя                                             |
| Pd00     | 1        | Минимальное напряжение на входе FIV(AI): 1B                           |
| Pd01     | 5        | Максимальное напряжение на входе FIV(AI): 5В                          |
| PG00     | 1        | PID-регулятор активирован                                             |
| PG03     | 0        | Выбор входа FIV/AI (I) в качестве входа для обратной связи            |
| PG04     | 50       | Численное значения PID-регулятора в %: 50%**                          |
| PG07     | 100      | Коэффициент Р, PID-регулятора (%): 100%**                             |
| PG08     | 0.3      | Коэффициент I, PID-регулятора (сек): 0,3 сек**                        |
| PG09     | 0        | Коэффициент D, PID-регулятора (сек): 0 сек**                          |
| PG11     | ***      | частота перехода PID-регулятора в режим ожидания (Гц): например, 20Гц |
| PG12     | ***      | Пауза при переходе в режим ожидания PID-регулятора (сек):             |
|          |          | например, 60 сек                                                      |
| PG13     | ***      | Величина обратной связи для выхода из режима ожидания                 |
|          |          | РІD-регулятора (%): например, 60%                                     |
| PG14     | 1000     | Отображение величины обратной связи PID-регулятора: 1000****          |

<sup>\*\* -</sup> значения с шильдика двигателя.

\*\*\*\* - настройка параметра PG14 (значение обратной связи, отображаемое на дисплее)

приведена в таблице ниже.

PG11, PG12, PG13 – настраиваются после ввода основных параметров.

## Преобразователь готов к работе.

www.prst.ru

| Максимальный диапазон датчика давления |
|----------------------------------------|
| 1 бар                                  |
| 4 бар                                  |
| 6 бар                                  |
| 10 бар                                 |
| 16 бар                                 |
| 25 бар                                 |
| 40 бар                                 |
| 60 бар                                 |
|                                        |

<sup>\*\*\* -</sup> параметры настраиваются клиентом в зависимости от оборудования.